
www.manaraa.com

Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

April 2012

Performance of Data Transmission for mobile
applications
Md Ashrafur Rahaman
The University of Western Ontario

Supervisor
Dr. Michael Bauer
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Md Ashrafur Rahaman 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Rahaman, Md Ashrafur, "Performance of Data Transmission for mobile applications" (2012). Electronic Thesis and Dissertation
Repository. 408.
https://ir.lib.uwo.ca/etd/408

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/408?utm_source=ir.lib.uwo.ca%2Fetd%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

www.manaraa.com

PERFORMANCE OF DATA TRANSMISSION FOR MOBILE APPLICATIONS
(Spine title: Data transmission methods and techniques for mobile application)

(Thesis format: Monograph)

by

Md. Ashrafur Rahaman

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Ashrafur Rahaman 2012

www.manaraa.com

ii

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Michael Bauer

Supervisory Committee

Examiners

Dr. Hanan Lutfiyya

Dr. Mike Katchabaw

Dr. Xianbin Wang

The thesis by

Md. Ashrafur Rahaman

entitled:

Performance of Data Transmission
for mobile application

is accepted in partial fulfillment of the

requirements for the degree of
Master of Science

______________________ _______________________________
 Date Chair of the Thesis Examination Board

www.manaraa.com

iii

Abstract

Mobile applications have empowered and extended the usability of mobile devices far

beyond merely supporting voice communication. The development of mobile

applications, however, must deal with a variety of unique problems: limited working

memory, limited storage, limited processing power, and small screen size. Mobile

applications which rely on remote data sources and databases are particularly challenging

given the need to transmit data through wireless media and often involve complex

business logic. Our main goal is to improve the performance of mobile applications

which rely on remote data sources and databases. In this research work, we compare

different data transmission optimization techniques, different middleware approaches and

identify combinations of approaches for improving performance of data transmission

over wireless network. The results of this research provide useful guidelines for the

development of mobile applications needing to connect to remote databases or data

sources.

Keywords

QoS of data transmission, Mobile application, Mobile data transmission models, mobile

data transmission techniques, mobile computing, middleware, mobile application API.

www.manaraa.com

iv

For my parents Mrs. Ashrafunnessa and Mr. Md. Fazlur Rahaman.

www.manaraa.com

v

 Acknowledgments

First of all I would like to thank my supervisor, Prof. Dr. Michael Bauer, for his guidance

and assistance. He was very helpful and encouraging in choosing the topic of this thesis

and guiding me in my research. Thanks to him for his help and inspiration. I would like

to give a nod to my fellow researchers for being an excellent sounding board for both

ideas and the venting of frustrations. I would also like to thank faculty members and staff

of the Department of Computer Science for making my stay here highly enjoyable. Many

thanks go to my beloved family and friends for their understanding and endless support.

www.manaraa.com

vi

Table of Contents

CERTIFICATE OF EXAMINATION ... ii

Abstract .. iii

Acknowledgments... v

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xi

Chapter 1 ... 1

1 Introduction .. 1

Chapter 2 ... 5

2 Related Work on Middleware Models and Techniques for Mobile Applications 5

Chapter 3 ... 11

3 Software Architectures for Mobile Application ... 11

3.1 Introduction ... 11

3.2 Client-Server (C/S) Model .. 12

3.3 Client-Agent-Server (C/A/S) Model ... 13

3.4 Client-Intercept-Server (C/I/S) Model .. 15

3.5 Peer-to-Peer Model ... 16

3.6 Mobile-Agent Model .. 16

3.7 API .. 17

Chapter 4 ... 19

4 Implementation .. 19

www.manaraa.com

vii

4.1 Introduction ... 19

4.2 Databases .. 21

4.3 Middleware and Middleware API ... 22

4.3.1 Caching ... 22

4.3.2 Compression ... 24

4.3.3 Encryption ... 25

4.3.4 Overview of the Middleware .. 26

4.4 Mobile Agent API ... 27

4.4.1 Implementation of C/A/S .. 28

4.4.2 Implementation of C/I/S ... 30

4.5 Summary ... 32

Chapter 5 ... 33

5 Experiments and Results .. 33

5.1 Experimental Setup ... 34

5.2 Experiments with Inventory System ... 35

5.3 Experiments with a Medical Information System .. 37

5.3.1 Experiment 1: Basic Experiment .. 40

5.3.2 Experiment 2: Use of caching ... 41

5.3.3 Experiment 3: Use of compression ... 43

5.3.4 Experiment 4: Experiments with encryption .. 45

5.3.5 4-Factor Analysis .. 47

5.4 Summary ... 50

Chapter 6 ... 51

6 Discussion of Results ... 51

6.1 Realizing Data Transmission Techniques ... 51

www.manaraa.com

viii

6.1.1 Caching ... 51

6.1.2 Compression ... 52

6.1.3 Encryption ... 53

6.1.4 Combination of techniques ... 53

6.1.5 Mobile software architectures ... 54

Chapter 7 ... 55

7 Conclusion ... 55

www.manaraa.com

ix

List of Figures

Figure 3-1: Common rich client mobile application architecture 12

Figure 3-2: The Client-Agent-Server (C/A/S) model ... 13

Figure 3-3: Client-Agent-Server (C/A/S) model with remote database 14

Figure 3-4: The Client-Intercept-Server (C/I/S) model .. 15

Figure 3-5: Client-Intercept-Server (C/I/S) model with remote database 16

Figure 3-6: The Mobile Agent model ... 17

Figure 4-1: High level overview of the system ... 19

Figure 4-2: Overview of Client-Agent-Server request and response 20

Figure 4-3: Overview of Client-Intercept-Server request and response 21

Figure 4-4: Pseudo code to retrieve data from remote data sources 22

Figure 4-5: Middleware pseudo-code to retrieve or create cache data 23

Figure 4-6: Middleware pseudo-code to compress retrieved data 25

Figure 4-7: Middleware pseudo-code for encrypting retrieved data 26

Figure 4-8: Pseudo-code of service to retrieve data in middleware 27

Figure 4-9: J2ME libraries and third party libraries for C/A/S application 29

Figure 4-10: Command actions to generate mobile data .. 29

Figure 4-11: Data process and display in Client-Agent-Server .. 30

www.manaraa.com

x

Figure 4-12: Client-Intercept-Server mobile application .. 31

Figure 4-13: Intercept API .. 31

www.manaraa.com

xi

List of Tables

Table 5-1: List of development tools for the experimental environment 34

Table 5-2: Communications between the mobile application, middleware server, and

remote database server. ... 35

Table 5-3: Steps of the inventory system mobile application ... 36

Table 5-4: Steps in different scenarios of inventory system ... 37

Table 5-5: Inventory system experiment result for scenario 1 and scenario 2 37

Table 5-6: Medical Information System step by step ... 39

Table 5-7: Experiment 1 scenarios and data sizes .. 40

Table 5-8: Regular experiment result and analysis ... 41

Table 5-9: Results of the analysis of variance (ANOVA) for Experiment 1 41

Table 5-10: Experiment with caching result and analysis .. 42

Table 5-11: Three-factor analysis on software model, scenario, and caching 42

Table 5-12: Results of the analysis of variance (ANOVA) of experiment with caching . 43

Table 5-13: Change of data size after data compression .. 43

Table 5-14: Experiment with compression results and analysis 44

Table 5-15: Experimental results for software models, scenarios, and compression 44

Table 5-16: Results of the analysis of variance (ANOVA) of experiments with

compression. ... 45

Table 5-17: Change of data size after encryption ... 45

www.manaraa.com

xii

Table 5-18: Experiment with encryption result and analysis .. 46

Table 5-19: Three factor analysis on software models, scenarios, and encryption 46

Table 5-20: Results of the analysis of variance (ANOVA) of experiment with encryption.

... 47

Table 5-21: Experiment design of 4-factor analysis ... 48

Table 5-22: The results of the analysis of variance (ANOVA) on the large data scenario.

... 49

Table 5-23: The results of the analysis of variance (ANOVA) on small data scenario of

the four-factor analysis ... 49

www.manaraa.com

1

Chapter 1

Introduction

1 Introduction

From its original inception as an accessory for mobile phones, mobile applications have

developed into a non-trivial ubiquitous platform for social and commercial purposes [1],

[2], [3], [4]. Mobile applications have empowered and extended the usability mobile

devices far beyond merely supporting voice communications.

Apple has proven that the mobile application market should not be underestimated and

can represent an important revenue stream. The revolutionary App Store offers more than

500,000 apps to iPhone, iPod and iPad users in 90 countries around the world; more than

18 billion applications downloaded by October 2011 from the Apple Store [5]. Following

Apple's lead, Palm Inc. opened an application store for Palm devices in June, 2009,

Nokia has opened the "Ovi Store", Samsung has created Samsung Apps, and Research in

Motion (RIM) also launched its application store, BlackBerry App World. Microsoft also

launched its own version of the Application Store called SkyMarket with Windows

Mobile (WM7). The Android Marketplace developed by Google also became well known

in a short time; they started on March 2009 with 2300 applications and by January 2012

the total number of application reached to around 400,000 [6] with the record of more

than 10 billion [7] downloads.

The current mobile development market is dominated by: Google (50.9%) with Android,

a Linux-based operating system for mobile devices; Apple (23.9%) with iOS; Accenture

(11.7%) its Symbian OS; RIM (8.8%) with its Blackberry OS; Microsoft (1.9%) with its

Windows Phone Operating System; and Samsung Electronics (2.1%) with Bada Mobile

operating system [8].

www.manaraa.com

2

Each mobile OS offers a software development kit (SDK) which is generally composed

of an integrated development environment (IDE), an emulator, specific libraries, and

other tools. Although the development environment and programming language are

similar to that in the PC environment, the program structures are very specific for each

mobile OS.

With the popularization of mobile computing, many developers have faced problems due

to great heterogeneity of devices [9]. In a mobile environment, the wireless

communication is still intermittent, mobile devices have hardware restrictions such as:

limited working memory, limited storage, limited processing power, and small screen;

energy in mobile devices are very limited too. This means that developing large scale

mobile applications which can connect to remote data sources or databases through

wireless connections with high computational business logic must take into account these

limitations. Support for complex or extensive applications in mobile phones which make

use of data from remote sources or need remote computing capabilities still require

servers and/or middleware.

Popular mobile relational database systems like IBM's DB2 Everywhere 1.0, Oracle Lite,

Sybase's SQL etc. work on Palm top and hand held devices (Windows CE devices) and

provide local data storage for relational data acquired from enterprise relational

databases. The main constraints for such databases relate to the size of the devices’

memory and size of the program, as handheld devices have memory constraints [10].

Moreover, enterprise databases cannot be replaced by these mobile relational databases.

To support extensive applications in mobile phones that require retrieval of data from

remote data sources, middleware is needed which has the capacity to deal with mobile

agents and remote database servers, and can improve the transmission of data by

implementing caching, pre-fetching, data prioritizing and data compression techniques.

Mobile applications or agents can access the middleware through an API to make the

communication between mobile agent and middleware transparent.

www.manaraa.com

3

In our research, we investigate difference in middleware approaches to retrieve data from

remote databases or data sources and transmit data to handheld devices. To analyze the

performance of data transmission, different data transmission techniques has been used

with different middleware models. The study includes performance analysis of data

transmission in two different domains with different scenarios. Through experiments, we

identify approaches or combinations of techniques that perform best for mobile

application. We also conduct experiments on data security and large volume data transfer

techniques over wireless network.

We compare the performance of two common software architectures (Client-Agent-

Server and Client-Intercept-Server) used for the development of mobile applications

requiring access to middleware. We also examine the performance impact, in terms of

transmission time, of using caching, compression, encryption, and/or combination of

these techniques in mobile applications relying access to remote data. Our quantitative

analyses examine a mobile application running on a mobile phone, connecting to a

middleware server hosted remotely with a database server located on another remote

host. Thus, our experiments are performed in real life scenarios instead of a laboratory

setup. The experiment results provide guidelines to the mobile application developers

about the software models and techniques or combination of technologies to use for QoS

of data transmission for mobile applications.

As part of our work, we also developed a middleware API and a mobile application API

which can be used by others to help simplify the development of mobile applications that

need to access data from remote data sources. By using the API, software designers can

use the functionalities provided by the middleware and applications already developed.

In Chapter 2, we review the existing literature on some of the architectural approaches for

supporting mobile applications and then look at the middleware with data transmission

techniques. As we develop an API to simplify development of high computing mobile

application, we review API proposed for middleware and literature on qualitative and

quantitative analysis of mobile application data transmission for remote data sources.

www.manaraa.com

4

In Chapter 3, we explain different mobile application software architectures has been

proposed last two decade, middleware techniques and importance of API for mobile

application development.

In Chapter 4, we present the system we have developed to analyze data transmission for

mobile application. We explain the pseudo codes, algorithms, tools, and software we use

to develop the middleware API and mobile application API. Also, we describe our

system architecture in this chapter.

In Chapter 6 we discuss the experiment we have conducted and the results of the

experiments. Also, we represent our findings from the experiments.

In Chapter 7 we represent the conclusion and future works of this research work.

www.manaraa.com

5

Chapter 2

Related Work on Middleware Models and Techniques for

Mobile Applications

2 Related Work on Middleware Models and Techniques
for Mobile Applications

During the last decade, several research efforts have focused on middleware and data

transmission techniques for mobile applications. We first review some of the architectural

approaches for supporting mobile applications and then look at the middleware with other

data transmission techniques.

To accommodate the new computing paradigm introduced by mobile wireless computing,

various software models have been proposed including the client-server (C/S), client-

agent-server (C/A/S), client-intercept-server (C/I/S), peer to peer, and mobile agent

models. In Chapter 3 we discuss these models in detail.

In [29], Spyrou et al. qualitatively and quantitatively analyzed a set of software models

built on the client/server model or mobile agents for accessing a Web server and

proposed new techniques mixing the client-server models and mobile agent techniques.

They compared the C/A/S and C/I/S models in the context of browsers and web servers

for wired network. According to their experimental results, the C/A/S model requires

considerably less time than any other client/server model. Though C/I/S model lacks in

performance due to the additional creation of the client-side agent, it supports

compatibility, since it can be built on top of existing applications. According to the

researchers, the C/I/S model provides more flexibility than C/A/S and that should have

been translated to better performance; C/I/S model performs better for heavy-weight

clients with large computational power. In our research work, we look at both the C/A/S

www.manaraa.com

6

and C/I/S models in the context of mobile applications where there is a need to access

data sources or databases are in remote locations. In particular, we compare the

performance of the C/A/S and C/I/S models in dealing with remote data sources and

databases for mobile applications considering different data transmission techniques

(caching, encryption, and compression) in two domains (medical and general inventory)

with different scenarios (large data set and small data set).

Transmission of a large amount of data through a wireless network to a memory limited

mobile application is a real challenge. Researchers have proposed different middleware

approaches to meet these challenges. While there has been previous work on mobile

applications and supporting middleware, there has been little quantitative work

comparing different approaches and use of different techniques on the performance of

data transmission; the current research begins to fill this gap. Some of the previous

research related to middleware is described in the following.

Capra and Mascolo [11], [12] identify requirements for middleware that supports

mobility. They discuss the main characteristics and differences between wired and

wireless environments that impact mobility, and categorize and study some possible

middleware solutions. They propose the use of reflection capabilities and meta-data to

pave the way for a new generation of middleware platforms designed to support mobility.

They suggest the use of a reflexive middleware [13] in a mobile computing environment

to solve the problem of losing network connectivity during the movement of the mobile

devices. In [14], they describe a reflexive middleware for ad hoc networks named

XMIDDLE that allows data sharing and uses XML to encapsulate information but it does

not clearly distinguish the client and server applications. In [15], they present another

middleware named CARISMA which allows changes in the context based on a set of

rules. Both CARISMA and XMIDDLE middleware are based on client-server model.

Campbell et al. [16] propose a middleware, named Mobiware, to support multimedia

applications, considering QoS requirements, in a mobile environment. The platform is

built on a distributed system and Java technology and uses adaptive algorithms to support

QoS controlled mobility. The goal of the Mobiware adaptive algorithms is to provide

www.manaraa.com

7

scalable transport flows, reduce handoff dropping and improve wireless resource

utilization. Mobiware provides an adaptive transport API for the middleware which

follows client-server approach to select, dispatch, bootstrap, configure and tune

multimedia objects.

Bellavista et al. [17] present a middleware for mobile users, also based on mobile agents,

to keep services running regardless of a user’s mobility. The middleware provides

services to support a virtual environment, virtual terminal, and resource manager.

In [18], Chan and Chuang propose MobiPADS, a middleware that uses information from

the physical environment to perform self-configuration. It allows dynamic adaptation in

both the application and the middleware itself. MobiPADS has two parts: a client at a

mobile device attached to the Internet through wireless or cellular networks and a server

at the wired network. This extended server-client application is designed to support

multiple MobiPADS clients and is responsible for most of the optimization computation.

MobiPADS collects metrics about the environment such as bandwidth, latency, and

processor usage, and notifies the applications that use those data.

Middleware for mobile computing environments is discussed in [19], where the authors

addressed the problems of the heterogeneity of devices in such environments. To this

end, they present a middleware for multi-client and multi-server mobile applications,

taking into account the resource restrictions of mobile devices. At the client side,

application development is done using a lightweight, robust and portable platform. At the

server side, the middleware allows high scalability and the full use of resources of the

machines it is installed. The proposed middleware provides a transparent communication

API to develop applications for mobile environments and allows applications to divide

their work amongst server and client sides. The middleware simplifies the development

of applications for mobile computing. By using the API, software designers can use the

functionalities provided by the middleware or applications already developed. The

middleware is based on the extended C/S model (C/A/S model) and provides

communication primitives for applications to exchange messages transparently between

the application in mobile device and the middleware, and independently of a specific

www.manaraa.com

8

communication protocol. The proposed middleware simplifies the development of

applications for mobile computing, and, through the API, software designers can use the

functionalities provided by the middleware or application already developed. The

researchers, however, did not quantitatively compare the performance of the C/A/S and

C/I/S models for their applications.

Gehlen and Mavronsmatis [20] proposed a mobile web service middleware, which

supports the publishing and discovery of web services and enables the efficient usage of a

network resource through context monitoring. Here, the context awareness is realized by

a rule based data monitoring in order to minimize the communication frequency over the

mobile links and, thus, to minimize the runtime costs of the mobile application. However,

it does not support the real-time change of context.

In [21], researchers analyze the performance of the Wireless Application Protocol (WAP)

based access compared to HTTP in terms of criteria such as: latency, data transfer,

memory footprint and CPU power requirements for accessing XML Web services from

mobile clients. The analysis showed that the performance in term of latency can be

increased using a WAP binding to SOAP. With WAP it is possible to access all existing

HTTP web services. The SOAP messages are reduced by a third using Wireless Binary

XML (WBXML) encoding [22]. WBXML was developed mainly for low bandwidth

networks and restricted Central Processing Unit (CPU) power, and seems appropriate for

mobile XML messaging. The connectionless Wireless Session Protocol (WSP) avoids

TCP’s three way handshaking, header volume reduction and optional reduction of the

payload data volume; it reduces the protocol data overhead by more than a third

compared to the HTTP.

Caching and pre-fetching on the edge of the Internet has been one of the most popular

techniques to improve the scalability and efficiency of delivering dynamic web content.

Leveraging these techniques for mobile application to improve application’s data

transmission efficiency has been discussed in several research papers.

Gupta et al. [23] concentrated on the aspects of data management over mobile ad-hoc

networks and proposed to estimate the global distribution and then predict and cache the

www.manaraa.com

9

most popular data in the hope of being able to provide it to other devices when asked by

them.

Along similar lines, Yin and Cao [24] propose a cooperative caching scheme for mobile

ad hoc networks using caching of popular data so that the availability in mobile ad hoc

networks is increased. Specifically, they propose three schemes: CachePath, CacheData

and HybridCache. In CacheData, intermediate nodes cache the data to serve future

requests instead of fetching data from the data center. In CachePath, mobile nodes cache

the data path and use it to redirect future requests to the nearby node which has the data

instead of the faraway data center. HybridCache improve the performance by taking

advantage of CacheData and CachePath while avoiding their weaknesses. According to

their simulation results, the proposed schemes can significantly improve the performance

in terms of query delay and message complexity when compared to other caching

schemes.

In [25], researchers propose anticipatory retrieval of data, and to cache data that is likely

to be requested later. Here, caching is done asynchronously in the background during

times of high bandwidth. They propose algorithms to assess the semantic relevance of the

data using semantic distances along with user priorities and availability of bandwidth,

and then prioritizes anticipatory data downloads on to the cloud’s storage based on the

relevance quotient. Here, data prioritization and reprioritization depends on data size,

priority and availability. The model provides better performance, adapts to varying

bandwidth, and pre fetches data from cloud with better accuracy and relatively little

overhead.

Data transmission in the wireless network can be vulnerable to security attacks and, thus,

ensuring data security is an important concern in some situations. In [26], researchers

introduced a security model based on message digests, encryption and decryption

technology to access remote data securely. Researchers implemented this security model

in mobile-agent architecture with large number of remote data processing tasks. The

experimental results show that the proposed model is secure and feasible for the mobile-

agent architecture. This research did not explicitly examine the performance impact of

www.manaraa.com

10

using encryption for delivery of data to mobile applications. Our work looks specifically

at this impact.

In our research, we will focus on the C/A/S model and C/I/S model while investigating

the impact of different technologies such as caching, encryption, and compression. Our

main goal is to analyze the effect of data transmission from remote enterprise database

using caching, encryption, and compression techniques.

www.manaraa.com

11

Chapter 3

Software Architecture for Mobile Application

3 Software Architectures for Mobile Application

3.1 Introduction

Mobile applications are normally structured as a multi-layered application consisting of

UI, business, and data layers. When developing a mobile application, developer may

choose to develop a thin Web-based client or a rich client. In the case of building a rich

client application, the business and data services layers are likely to be located on the

device itself. On the other hand, the business and data layers will be located on the server

to build a thin client. Figure 3-1 illustrates common rich client mobile application

architecture with components grouped by areas of concern [30].

In our research, we focus on the client-agent-server (C/A/S) and client-intercept-server

(C/I/S) models because we are retrieving data from remote enterprise databases or data

sources and these two models seems to be the best fit for those tasks based on previous

research. Moreover, our review of middleware based on mobile browsers says that most

of the mobile browser engines were developed using either C/A/S or C/I/S model to

retrieve from websites. In this chapter we will describe different software models

proposed in previous researches.

www.manaraa.com

12

Figure 3-1: Common rich client mobile application architecture

3.2 Client-Server (C/S) Model

In the client–server model, the server component provides a function or service to one or

many clients, which initiate requests for such services. The C/S model requires an

application or browser to be located on the mobile client and communicate directly with

the web server or database server via wireless communications. At the time of accessing

a specific database, the client downloads the appropriate database driver to the mobile

phone and then a connection establish between client and the database server.

In case of mobile application, the limitations of traditional C/S application are as follows:

• The main limitation of traditional C/S model is that the model suffers for

performance due to download and initiation of the database driver (ranges

www.manaraa.com

13

between 300-500 KB) on the client machine every time it connects to the

database; that also wastes bandwidth.

• There is no way to optimize the data before the transmission to the mobile client,

so receiving large data may not work or even if it works, it will take long time,

which will affect the quality of the application data. So, a heavy loaded agent

application may not work and regular applications will experience performance

problems.

• Due to no data optimization before data transmission over network, data security

cannot be provided to the wireless network. So, traditional C/S model based

application undergoes security issue.

3.3 Client-Agent-Server (C/A/S) Model

The C/A/S architecture is a popular extension of the C/S model, containing three-tier

architecture. Here, any communication goes through the mobile agent. At one extreme,

agent acts as a mobile host. At another extreme, the agent is attached to a remote database

or data source. Any client’s request and server’s response associated with this application

is communicated through this service-specific agent. In this scenario, a mobile host must

be associated with as many agents as the services it needs access to. Agents split the

interaction between mobile clients and fixed servers into two parts, one between the

client and the agent, and one between the agent and the server.

Figure 3-2: The Client-Agent-Server (C/A/S) model

www.manaraa.com

14

The advantages of the C/A/S model are:

• Solves the problem of initializing database driver for every query in C/S model.

• This model alleviates some of the impact of the limited bandwidth and poor

reliability of wireless links by constantly maintaining the client’s presence on the

network via the agents.

• The agent splits the interaction between the mobile client and fixed servers into

two parts, one between the client and the agent and one between the agent and the

server.

• Data transmission can be optimized in the middleware so the QoS of data

transmission improves with lower cost computation in the middleware or agent.

• A security wrapper in the middleware can provide data security over the wireless

network.

Though the client-agent-server model offers number of advantages, it fails to sustain the

current computation at the mobile client during periods of disconnection. In addition, the

agent can directly optimize only data transmission over the wireless link from the fixed

network to the mobile client but not in the opposite direction.

Figure 3-3: Client-Agent-Server (C/A/S) model with remote database

www.manaraa.com

15

In our research, we focus on an enterprise database, which is located at a remote server

and connected to the middleware through the Internet.

3.4 Client-Intercept-Server (C/I/S) Model

The C/I/S model proposes the deployment of an agent that will run at the mobile device

along with an agent that will run in the server side or middleware. This client-side agent

intercepts the client’s requests and together with the server-side agent performs

optimizations to reduce data transmission over the wireless link, improve data availability

and sustain the mobile computation uninterrupted. From the point of view of the client,

the client-side agent appears as the local server proxy that is co-resident with the client.

Since the pair of agents is virtually inserted in the data path between the client and the

server, the model is also called C/I/S instead of C/A/S.

Figure 3-4: The Client-Intercept-Server (C/I/S) model

This model provides separation of responsibly between the client-side and server-side

agents which facilitate highly effective data reduction and protocol optimization. In case

of database applications this model consists a client-side database agent which is specific

to the agent and serve only one agent; the server side database agent will serve many

agents at a time. The agent pair cooperates to intercept and control communication over

the wireless link for reducing network traffic and query processing. In our research, we

also investigate the C/I/S model.

www.manaraa.com

16

Figure 3-5: Client-Intercept-Server (C/I/S) model with remote database

3.5 Peer-to-Peer Model

In the peer-to-peer model, the server resides at the mobile host. In this case, mobile hosts

are equal partners in distributed computations. This network has emerged as an efficient

system, being typically used for sharing files containing audio, video, data or any digital-

format files and distributing services over fixed networks.

3.6 Mobile-Agent Model

In the mobile-agent model [31], [32] an agent first lands at an object server and then is

executed to manipulate objects in the object server. If the agent finishes manipulating the

objects in the object server, the agent moves to another server which has data to be

manipulated. Here, agents manipulate objects only in local object servers without

exchanging messages in a network. In addition, an agent negotiates with the agent if

some agents manipulate objects in a conflicting manner. Through the negotiation, each

agent autonomously makes a decision on whether the agent continues to hold the objects

or gives up to hold the objects. After manipulating all or some of the servers, an agent

makes a decision on commit or abort. Here, object servers may suffer from crash faults.

www.manaraa.com

17

Figure 3-6: The Mobile Agent model

3.7 API

In this research we experiment with C/A/S and C/I/S; as we are retrieving data from

remote data source or database, these two models are supposed to behave better than

other models proposed by researches over the last two decades.

To experiment with different models and technologies for data retrieval, we developed an

API for the middleware. There are several mobile phones providers available in the

market with their own operating system; and every operating system provides a different

SDK to develop applications. Mobile application developers are facing problems due to

great heterogeneity of these devices. A common API with the flexibility to support

caching, compression, and encryption will make development of mobile application

easier and faster. We also developed an Agent API for C/I/S model which will compute

the caching data, decompression and decryption and the mobile application end.

The two APIs developed, then, are: 1) The Middleware API which provides a web

service which return data in XML format, so any mobile application can retrieve the data

and use it for the application. The API has the flexibility to retrieve data from databases

through middleware and make use of caching, compression, encryption or any

combination of these technologies. 2) The Mobile Agent API which has been developed

using J2ME which provides functionalities for retrieving cache data, decompressing data,

www.manaraa.com

18

and decrypting data coming from the middleware API. Mobile application developers can

use this API for their J2ME or Java based mobile application.

The middleware API is a universal API providing web services and returning standard

web service data so any mobile developer can use this to retrieve data from remote

databases. Also, the mobile API will help to process the remote data for the mobile

application, especially developed in J2ME or Java.

www.manaraa.com

19

Chapter 4

Implementation

4 Implementation

4.1 Introduction

To evaluate the different models and impact of the different techniques on data

transmission for mobile applications in a wireless network, we developed the following:

• Two Remote databases

• Middleware API

• Mobile Agent API and Mobile application for two different domains.

In the data transmission lifecycle, the mobile application sends a request to the

middleware; the middleware retrieves data from the cache or executes the query on the

remote database and processes the data; after processing the middleware returns data to

the mobile application. Finally, the mobile application processes the data returned from

the middleware and displays it. In Figure 4-1 we present a high level overview of the data

transmission lifecycle.

Figure 4-1: High level overview of the system

www.manaraa.com

20

We experiment on two mobile application architectures: the C/A/S and C/I/S models. In

the C/A/S model, the mobile application sends requests to the middleware and the

middleware processes the data based on the requests from the mobile application. If the

mobile application requests cache data, the middleware searches for the data in the cache.

If the data is found, the middleware returns it back to the mobile application. If the data

is not in the cache, the middleware retrieves the data from the database, caches it and

sends it back to the mobile client. The middleware also compresses and/or encrypts data

based on the request from the mobile client. After getting the data from the middleware,

the mobile application decompresses and/or decrypts data if necessary, processes the

XML formatted data from the middleware, and then displays it on the mobile screen. In

Figure 4-2, we illustrate the request and response cycle for the C/A/S model.

Figure 4-2: Overview of Client-Agent-Server request and response

In case of C/I/S, the middleware and the database are same as in the C/A/S model.

However, the mobile application does not directly communicate with the middleware or

processes returning data from the middleware; rather, it calls the Intercept. Instead of

calling web service, processing returned data from the web service (decompress, decrypt,

or extract from XML), the mobile application calls methods of mobile API which

compute these functions and return data to the application to display it. In Figure 4-3, we

illustrate the request and response interaction of the C/I/S model.

www.manaraa.com

21

Figure 4-3: Overview of Client-Intercept-Server request and response

4.2 Databases

We experimented with two different databases. One database contains medical

information of around 10,000 patients (all fictitious) and another database is the common

test database named AdventureWorks [42], which contains inventory information of

different products.

The medical database contains several tables of hospital information (hospital), patient

information (patient), patient in hospital information (patientinhospital), and the

diagnosis results of patients (patient_data). The database contains approximately ten

thousand patient’s diagnosis result in the patient_data table. Based on the patient data in

the in the patient_data table we can do different experiments.

The adventure works database contains many tables for a complete inventory system. In

our experiments we use product, product category, product subcategory, product

description, and product photo table; these all together create a small inventory system

for use with a mobile application.

www.manaraa.com

22

4.3 Middleware and Middleware API

The middleware retrieves data from the remote databases and returns it back to the

mobile application. The middleware is developed using C# programming language in an

ASP.NET platform. The pseudo code to retrieve data from a remote data source is

presented in Figure 4-4.

Function Get Data From Remote Data Source

Input: Database Information, Query String
Output: Data from database
Query� Encrypt Query String for Security
HttpWebRequest to send the request query to the database
HttpWebResponse to retrieve response result of the query from database
StreamReader to read the return data
Return String Format of StreamReader data

Figure 4-4: Pseudo code to retrieve data from remote data sources

We experiment with caching, compression and encryption within the middleware to

understand their impact on data transmission in a wireless network. The mobile software

developer can use the API to specify whether data should be cached or compressed or

encrypted or any combination of these techniques by the middleware, just by calling the

web services provided by the API. The API provides a generic interface to a middleware

platform and the mobile application developers can customize the use of these techniques

to meet the need of their application to retrieve data.

4.3.1 Caching

In most web based application or wireless applications, caching significantly improves

the performance of applications. Instead of repeatedly fetching the same data, caching

can be used to store data in a temporary memory. Every time the application fetches data,

the data can come from the cache instead of recalculating it or fetching it from a remote

location.

In our middleware, we use the ASP.NET application cache to cache data. The application

cache provides a programmatic way to store arbitrary data in memory using key/value

www.manaraa.com

23

pairs. Using the application cache is like using application state. However, unlike

application state, the data in the application cache is volatile. This means it is not stored

in memory for the life of the application. The advantage of using the application cache is

that ASP.NET manages the cache and removes items when they expire or become

invalidated, or when memory runs low.

Using a cache key the application cache determines whether an item exists in the cache or

not, and if it does, to use it. If the item does not exist, the application automatically

recreates the item and then places it back in the cache. The pattern of key/value pairs

ensures that the cache contains latest data from data source.

To retrieve data faster we pre-fetch data in the middleware. Every time the application

creates cache data we keep a record of the cache key and cache query. After a certain

time, the application automatically checks the data and pre-fetches it in files if the data

changes. We use the ASP.NET custom cache dependency feature to validate and expire

cache data. Custom cache dependency represents a logical dependency between a cached

item and a file(s), folder(s), or another cached item(s). When the dependency changes

(i.e., the file/folder/item changes), the bound cached item is removed from the cache so

the cache expires. In our middleware we create files based on cache dependency, every

time a new cache item is created, the system creates a file with the same name as the

cache key. At the time of pre-fetching, the system updates these cache dependency files

to keep the cache data update. The pseudo-code of the middleware caching and pre-

fetching process is presented in Figure 4-5.

Function Get Cached Data

Input: Query to execute, Cache Key
Output: Cached data from memory or retrieve data from database and cache for future
IF Cache Key is already available
 Return Cache Date based on cache key
ELSE
 Data � Get Posted Data from Database
 Create cache dependency file for cache validation
 Save Cache Key and Query for pre-fetching
 Return Data

Figure 4-5: Middleware pseudo-code to retrieve or create cache data

www.manaraa.com

24

This algorithm can be extended by using any other suitable caching technique instead of

using the built-in ASP.NET application caching. In the future, different caching

techniques could be implemented in order to analyze their performance for data

transmission for mobile applications.

4.3.2 Compression

Data compression is a common technology to represent information in a compact format;

data compression involves encoding information using fewer bits than the original

representation. Compression is useful because it helps reduce the consumption of

resources such as data space or transmission capacity. As the bandwidth of wireless

network is scarce, it may be advantageous to compress data to get the maximum out of

the bandwidth. Mobile applications suffer from limited memory where data compression

may help save memory and at the same time improve the speed of data transfer.

Mainly there are two types of compression techniques are available: Lossless

Compression and Lossy Compression. Lossless compression is mainly used for

spreadsheets, text and executable program compression; on the other hand Lossy

compression is mainly used for image, video, and audio compression. Lossless data

compression is used in many applications such as the ZIP file format and in the UNIX

tool gzip. Lossless compression is used in cases where it is important that the original and

the decompressed data be identical, or where deviations from the original data could be

deleterious. Typical examples are executable programs, text documents and source code.

In the middleware, we used gzip compression; it is based on the DEFLATE algorithm,

which is a combination of Lempel-Ziv (LZ77) and Huffman coding. Gzip contains:

• 10-byte header, containing a magic number, a version number and a time stamp

• optional extra headers, such as the original file name

• a body, containing a DEFLATE-compressed payload

www.manaraa.com

25

• 8-byte footer, containing a CRC-32 checksum and the length of the original

uncompressed data.

To implement gzip compression in the middleware, we used SharpZipLib [33], an

ASP.NET compression library that supports Zip files using both stored and deflate

compression methods. The pseudo-code for the middleware data compression is

presented in Figure 4-6.

Function Get Compressed Data

Input: Data from database or cache
Output: Compressed data of the original data
Data� Get Data from Database of Cache
CompressData� Compress Data in Gzip format using SharpZipLib library
CompressData� Encode the CompresseData
Return CompressData

Figure 4-6: Middleware pseudo-code to compress retrieved data

Instead of SharpZipLib, we could use any other compression algorithm in the middleware

just by modifying the algorithm.

4.3.3 Encryption

Encryption is the process of transforming information using an algorithm to make it

unreadable to anyone except those possessing special knowledge, usually referred to as a

key. The result of the process is encrypted information. The reverse process (to make the

encrypted information readable again) is referred to as decryption.

Encryption is mainly used to protect data transferred via networks, mobile telephones,

wireless microphones, wireless intercom systems, Bluetooth devices and bank automatic

teller machines. Encrypting data in transit helps to secure it as it is often difficult to

physically secure all access to networks.

In the case of enterprise databases, it is often necessary to move data over networks – to

other sites or to remote desktop and mobile applications. Data transmission across

networks, particularly public networks, creates potential security problems [34]. Given

www.manaraa.com

26

the importance of data security, we have implemented encryption in the middleware so

data transmission in the wireless network can become secured.

In our research work, we encrypt the data to Base64 data format before transmitting it to

wireless network. Instead of using a real encryption algorithm for our experiments, we

used Base64 encoding to emulate encryption processing; in reality this encoding scheme

is much less complex than a real encryption scheme. Base64 is a group of encoding

schemes that represent binary data in an ASCII string format by translating it into a radix-

64 representation. Base64 encoding schemes are commonly used when there is a need to

encode binary data that needs be stored and transferred over media that are designed to

deal with textual data. This is to ensure that the data remains intact without modification

during transport. Base64 is commonly used in a number of applications including email

via MIME, and storing complex data in XML. The pseudo-code for encryption in the

middleware is presented in Figure 4-7.

Function Get Encrypted Data

Input: Data from Database or Cache
Output: Encrypted data
Data� Data from Database or Cache
EncryptedData� Encrypt the Data using ASP.NET text encoding library
Return EncryptedData

Figure 4-7: Middleware pseudo-code for encrypting retrieved data

4.3.4 Overview of the Middleware

The middleware API is called by the mobile application through an XML based web

service. The web service call is a method named GetServiceData with parameters

specifying the technologies to be used to retrieve data.

The parameters are:

1. Database or data source;

2. Query to execute in the database;

www.manaraa.com

27

3. Caching information;

4. Compression Information;

5. Encryption Information;

The service method retrieves data from the database using the technologies as specified

in the parameters of the method and returns it to the mobile application. The pseudo-

code of this method is depicted in Figure 4-8.

Function Get Service Data

Input: Data source, QueryString, IsCaching, IsCompression, IsEncryption
Output: Data from database with optimization
Query � QueryString
IF IsCaching!= FALSE
 Data � GetCachedData
ELSE
 Data � GetDataFromDatabase
IF IsCompression Equals TRUE
 Data � GetCompressedData of the CacheData or Data from Database
IF IsEncryption Equals TRUE
 Data � GetEncryptedData of the CachedData or Data from Database and/or
ComrepssedData

Figure 4-8: Pseudo-code of service to retrieve data in middleware

4.4 Mobile Agent API

With the growing need to access remote web services from mobile applications, most of

the mobile SDKs provide a remote web services library. Even if any SDK does not

provide such a library, the developer can use third party open source software such as

kSOAP [35]. In our experiments, we use the J2ME Web Services API (WSA) [36]. The

API's two optional packages standardize two areas of functionality that are crucial to

clients of web services: remote service invocation and XML parsing.

To retrieve data from the web service data we used kXML [37], a lightweight Java-based

XML parser designed to run on limited, embedded systems such as personal mobile

devices. It is a pull parser which means it reads a little bit of the document at once. Then

www.manaraa.com

28

the application drives the parser through the document by repeatedly requesting the next

piece [38].

If the web service data is compressed, we use Jazzlib [39]; a java based open source

compression decompression library, it supports compression and decompression for

J2ME application too. Jazzlib supports encryption and decryption for different data

formats such as ZIP, GZip, and Deflector. In our experiments, the middleware provide

data in GZip compressed format so we used GZIPInputStream of Jazzlib to decompress

the middleware data.

If the web service data is encrypted, we use Base64 decryption provided by bouncycastle

[40]. Bouncy Castle provides a collection of cryptography techniques for both the Java

and the C# programming languages. They also provide a cryptography library for

Android. So, all Java based mobile applications (J2ME, Blackberry java application,

Android java application) can use this library to encrypt/decrypt data in different format.

4.4.1 Implementation of C/A/S

In the case of the C/A/S model, our mobile application is implemented using J2ME. The

application itself contains all the functionalities, such as remote data fetching, either from

cached or remote database, decompression of the data, if the data is returned by the

middleware server in compressed format and decryption of the data if the data is returned

by the middleware in an encrypted format. In the case of the C/A/S architecture, the

mobile application directly communicates with the middleware agent to retrieve data,

process the retrieve data, and display it to the mobile screen. Here all the computing in

the mobile application is in one class file.

The list of the J2ME libraries and third party libraries used to develop the mobile C/A/S

application are summarized in Figure 4-9.

www.manaraa.com

29

javax.microedition.midlet.*;
 javax.microedition.lcdui.*;
org.netbeans.microedition.lcdui.SplashScreen;
 java.util.Vector;
 liveservices.Services_Stub to retrieve data from middleware web service API
org.kxml2.io and org.xmlpull.v1 to read XML formatted web service data
net.sf.jazzlib.GZIPInputStream to decompress data
base64.decode to decrypt data

Figure 4-9: J2ME libraries and third party libraries for C/A/S application

In our experiments we display data in J2ME controls. The mobile application calls a web

service on command action, and loads the processed data into control; the pseudo-code of

the command action is presented in Figure 4-10.

SERVICE � Initiate web service stub.
DABASE � Database connection information or path
SQL � Query to retrieve data from database
CACHE� ‘false’ if not cache data ‘cache_key’ if data from cache
COMPRESS� ‘true’ if compressed, ‘false’ or ‘blank’ if not compressed
ENCRYPT � ‘true’ if encrypted, ‘false’ or ‘blank’ if not encrypted
LIST_ITEM� Name of the list item to load data on mobile screen
CALL FUNCTION GENERATEVIEW with parameters

SERVICE, DATABASE, CACHE, COMPRESS, ENCRYPT, LIST_ITEM

Figure 4-10: Command actions to generate mobile data

The mobile application does the following things to generate the list view from the web

service data:

1. Retrieve data from the web service by calling the web service method.

2. Check if data is encrypted, if encrypted, then it uses the Base64.Decode() method

to decrypt the data.

3. Check if the data is compressed, if compressed, then it uses GZIPInputStream to

decompress data.

4. Convert the data to byte array and pass it to KXML to extract data from the XML

format as well as append it in List view control to display.

www.manaraa.com

30

Figure 4-11 provides an overview of the GENERATEVIEW function, which actually

retrieves data from web service, processes the data and displays it on the mobile screen.

DATA� SERVICE.GETDATA (DATABASE, SQL, CACHE, COMPRESS,
ENCRYPT)
XMLBYTEARRAY � Initialize byte array for temporary data store
IF ENCRYPT Equals TRUE

XMLBYTEARRAY� Base64.Decode(DATA)
FLAG� TRUE

END IF
IF COMPRESS Equals TRUE

FLAG� TRUE
DATABYTEARRAY� Initialize a byte array for temporary data store
IF XMLBYTEARRAY Equals NULL

DATABYTEARRAY� Base64.Decode(DATA)
ELSE

 DATABYTEARRAY� Base64.Decode(XMLBYTEARRAY)
END IF
XMLBYTEARRAY� Get Decompress data using GZIPInputStream

END IF
IF FLAG Equals False // IF data is not compressed or encrypted

XMLBYTEARRAY� DATA.GetBytes()
END IF
Read XMLBYTEARRAY using KXML and append data in LIST_ITEM

Figure 4-11: Data process and display in Client-Agent-Server

4.4.2 Implementation of C/I/S

In the case of C/I/S, we developed an Intercept API; the name of the API package is

Intercept. The Intercept API contains methods to retrieve and read XML formatted web

service data, do decompression and decryption. Here, the mobile application calls the

web service, retrieves web service data and passes the data to the Intercept API; the

Intercept API processes the data, saves it in temporary storage, and returns it back to the

mobile application to display it.

The source code for the C/I/S is pretty simple; the pseudo-code of the mobile application

following C/I/S model is presented in Figure 4-12.

www.manaraa.com

31

SERVICE� Initiate Middleware Service and Call Service Method
DABASE � Database connection information or path
SQL � Query to retrieve data from database
CACHE� ‘false’ if not cache data ‘cache_key’ if data from cache
COMPRESS� ‘true’ if compressed, ‘false’ or ‘blank’ if not compressed
ENCRYPT � ‘true’ if encrypted, ‘false’ or ‘blank’ if not encrypted
DATA � (DATABASE, SQL, CACHE, COMPRESS, ENCRYPT)
RESULT � CALL INTERCEPT API (DATA, CACHE, COMPRESS, ENCRYPT)
DISPLAY RESULT in the mobile screen.

Figure 4-12: Client-Intercept-Server mobile application

In the case of C/I/S, the mobile application itself becomes smaller because all the

computation has been done by the Intercept API, the mobile application just needs to call

the API and display the returned result in any display control structure. This Intercept

API can be used for any mobile application developed in Java; it makes the mobile

application development simple and faster. The pseudo-code of the Intercept API is in

Figure 4-13.

USE org.kxml2.io and org.xmlpull.v1 to read XML data
USE net.sf.jazzlib.GZIPInputStream library to decompress data
USE base64.Decode to decrypt data
FUNCTION GET_DATA_TO_DISPLAY (DATA, CACHE, COMPRESS, ENCRYPT)
XMLBYTEARRAY � Initialize byte array for temporary data store
IF ENCRYPT Equals TRUE

XMLBYTEARRAY� Base64.Decode(DATA) ; FLAG� TRUE
END IF
IF COMPRESS Equals TRUE

FLAG� TRUE
DATABYTEARRAY� Initialize a byte array for temporary data store
IF XMLBYTEARRAY Equals NULL

DATABYTEARRAY� Base64.Decode(DATA)
ELSE DATABYTEARRAY� Base64.Decode(XMLBYTEARRAY)
END IF
XMLBYTEARRAY� Get Decompress data using GZIPInputStream

END IF
IF FLAG Equals False // IF data is not compressed or encrypted

XMLBYTEARRAY� DATA.GETBYTES()
END IF
RESULT � Read XMLBYTEARRAY using KXML and Generate a Vector
RETURN RESULT

Figure 4-13: Intercept API

www.manaraa.com

32

4.5 Summary

In this Chapter we reviewed our system implementation. We developed a generic

middleware API and Java-based mobile application development API. These APIs meet

our requirements to enable us to evaluate different mobile application architectures and

technologies. These APIs can also be extended and used for further experimentation with

other mobile architectures and technologies. These APIs can be used by the mobile

application developers to make development simple, easier and faster.

www.manaraa.com

33

Chapter 5

Experiments and Results

5 Experiments and Results

Our research focused on two extended Client/Server architectures: the C/A/S model and

the C/I/S model. Our goal was to analyze data transmission for these two mobile software

architectures in different scenarios of a mobile application with some common but

effective technologies integrated into the middleware of the system; such as middleware

data caching, data compression, and data encryption.

We experimented with data transmission in two different domains: An inventory system

and a medical information system. We first developed a mobile application for the

inventory system for use with small scale data analysis. Analysis involving larger data

sets was then done using the medical information system. Our experimental environment

consisted of the following components:

1. Two remote database server;

2. Middleware server (providing web service);

3. Mobile application (C/A/S application and C/I/S application).

In Table 5-1 we summarize the tools we used for the experimental systems.

Component Development Tool

Remote database Server 1 MySQL Database

Remote Database Server 2 MySQL Database

Middleware API ASP.NET web service

www.manaraa.com

34

Mobile Application C/A/S J2ME

Mobile Application C/I/S J2ME

Table 5-1: List of development tools for the experimental environment

5.1 Experimental Setup

The following provides an overview of the experimental environment in more detail.

Database Server: The databases are hosted on a remote server (www.godaddy.com),

accessible through a public IP address; it has a Linux operating system and runs MySQL

server, version 5.0.

Middleware Server: The middleware was developed using ASP.NET web service [41]

and the C# as the programming language for the middleware. The middleware server runs

Internet Information Services (IIS) 7 server. The configuration of the server is: Windows

7 32-bit operating system, Intel core duo 2.3 GHz processor and 4 GB memory. It is

accessible through the Internet through a public IP address.

Mobile Phone: To experiment with mobile applications, we used a Nokia E72 smart

phone; configuration of the mobile phone is: Symbian OS 9.3, 600 MHz CPU, 250 MB

Internal memory, and 128 MB RAM.

In Table 5-2 we outline the communication details between the mobile application, the

middleware server and the remote databases.

Mobile Application Middleware Remote Database

The mobile application
connects to the middleware
services through wireless
(WiFi).

The mobile application is
installed on a mobile phone
so application can be run

The middleware is located
in a laboratory in the
Computer Science
Department at the
University of Western
Ontario; this server has a
public IP.

The remote database is
hosted on a server at the
godaddy.com hosting
service. It has public IP.

Middleware communicate
with the remote database
through the IP address.

www.manaraa.com

35

and accessed from
anywhere.

Testing was done from a
home residence connection
which had a 2Mbps
dedicated wireless
connection.

The mobile application
communicates with the
middleware through the
middleware API using the
public IP of the middleware
server.

Communication to this
server was from the
middleware server through
the Internet.

Table 5-2: Communications between the mobile application, middleware server, and

remote database server.

5.2 Experiments with Inventory System

We developed two mobile applications for accessing information from the inventory

system following the C/A/S and C/I/S models. The inventory system applications use the

product information tables of the AdventureWorks database. The application displays all

the product categories from the category table, and then enables the user to select a

category. Selecting the category causes the application to display the subcategories from

and then selecting a subcategory produces a list of the products under the category and

subcategory. When the user selects any of the products from the product list, the

application retrieves and displays all the information available in the database for the

product along with the product image. In Appendix E, we present the query involved in

each step of the application. The steps of the inventory system mobile application are

presented in Table 5-3.

Step 1: Retrieve product categories from the

remote database through the middleware

service. The user scrolls to a desired product

category and selects it (“Bikes).

www.manaraa.com

36

Step 2: Select a product from the product

category list (“Bikes”); the application

retrieves the subcategories of the selected

category. Selecting a subcategory

(“Mountain Bikes”) retrieves the products.

Step 3: Once a subcategory (“Mountain

Bikes”) has been selected, the application

retrieves the product list.

Step 4: Selecting a specific product from the

product list (see Step 3 for selected product),

the application retrieves and displays

information on the product and an image of

the product from database.

Table 5-3: Steps of the inventory system mobile application

Our initial experitments involved two different scenations for both of the software

architectures. At every step in the application (as in Table 5-2) we measure the execution

time from the time the request is sent until the information is displayed on the moible

device. We compare the two models with two different scenarios using the mobile

www.manaraa.com

37

inventory application; the scenarios are summarized in Table 5-3. The results of the

experiements are presented in Table 5-4; each experiment was repeated 3 times.

Scenario

Step 1 (Select

Category)

Step 2 (Select

Sub Category)

Step 3 (Select

Product)

Step 4 (Product

details)

1 Bikes Mountain Bike Product 773 Product Details

2 Accessories Bike Racks Product 876 Product Details

Table 5-4: Steps in different scenarios of inventory system

 C/A/S (SD) C/I/S (SD) Data Size

Scenario 1 1662.00 ms (13.00) 1696.33 ms (9.82) ~7 KB

Scenario 2 1614.33 ms (12.66) 1643.00 ms (21.28) ~ 2.5 KB

Table 5-5: Inventory system experiment result for scenario 1 and scenario 2

In this experiment, Scenario 1 (~7 KB) loads with more data than Scenario 2 (~2.5 KB).

The experiment result shows that in case of both of the architectures, data transmission

time for Scenario 1 is larger than data transmission time of Scenario 2; standard

deviations are in parentheses. The result shows that the C/A/S performs slightly better

than the C/I/S, but given the size of the standard deviations, the relatively small amounts

of data in both scenarios, there is really little difference in performance of the mobile

software architectures.

With the inventory look-up application, we were able to test the APIs and make some

initial comparisons between the software models. We were able to evaluate the

application with modest amounts of data. For this simple look-up application, both

models functioned well.

5.3 Experiments with a Medical Information System

While the inventory application was useful, the data available was relatively limited.

Given that there was more data available in the medical information system; we chose to

carry out more extensive analysis with that application. In particular, we used it to assess

www.manaraa.com

38

the performance impact of caching, compression, and encryption as well as

decompression and decryption in the mobile application for both the C/A/S and C/I/S

architectures. The medical application also was more “natural” in retrieving more data.

In the Medical Information Application, a user (e.g., doctor, nurse, etc.) can login and

search patients by their last name or first name or any part of the name. The search result

returns a list of patients along with their unique identity number, name, age, and sex.

Selecting a patient from the list returned, will cause the application to search the database

and return the medical history and previous diagnosis results of the patient. In Appendix

F, we summarize the queries used for each step of the application. The steps of the

Medical Information System are illustrated Table 5-6.

Step 1: User logs in using their user name and

password; saved in the database along with

permissions to check a patient’s medical

information.

Step 2: After successful login, the user can

search for a patient by first name, last name, or

any part of the name.

Example: ‘Henry’, ‘John’, or ‘Jo’

www.manaraa.com

39

Step 3: Based on the search key, data is

retrieved from the remote database; basic

information is displayed: Patient Identification

Number, Name, Age and sex.

At the bottom of the screen, the total time taken

in milliseconds to retrieve data from database

and display it is displayed, along with total

number of records found and the size of the

returned data in bytes.

Step 4: Selecting any of the patients will display

that patient’s medical and diagnosis history.

Table 5-6: Medical Information System step by step

Using the Medical Information Application, we carried out a number of experiments:

www.manaraa.com

40

• Experiment 1: Basic experiment comparing the two architectures for two

scenarios. The remaining experiments build on this experiment by using one or

more additional capabilities (e.g. caching) of the middleware.

• Experiment 2: Experiment with caching.

• Experiment 3: Experiment with compression.

• Experiment 4: Experiment with encryption

• Experiment 5: Experiment varying all aspects; 4-Factor analysis on software

architecture, caching, compression, and encryption

All the experiments have been executed with three replications.

5.3.1 Experiment 1: Basic Experiment

In Eexperiment 1, the mobile application requests, through the middleware, data from the

remote database; the middleware retrieves the data and sends it to the mobile application

through the web service in XML format. The mobile application extracts the retrieved

data from the XML formatted data and display it on the mobile screen. We execute the

experiment for three different scenarios involving different size data results. The

scenarios with the data sizes are presented in Table 5-7.

Scenario 1 Search key for patient search is ‘Henry’ Total patients found: 17, Data
Size: ~2KB

Scenario 2 Search key for patient search is ‘Li’ Total patients found: 397, Data
Size: ~45KB

Scenario 3 Search key for patient Search ‘T’ Total patients found: 1850,
Data Size: ~230KB

Table 5-7: Experiment 1 scenarios and data sizes

We replicate each experiment three times. The experimental results and analyses are

presented in Table 5-8. The application on our test mobile phone could not handle the

data of the scenario 3 (returns around 230KB data from middleware) to display; we will

use scenario 3 with different data transmission techniques in our experiments.

www.manaraa.com

41

Scenarios C/A/S (SD
1
) C/I/S (SD) Analysis

Scenario 1 525.67 ms
(31.39)

577.67 ms
(24.22)

C/A/S little faster than C/I/S but the
difference is too small to negligible

Scenario 2 856.00 ms
(24.64)

1073.00 ms
(37.26)

C/A/S faster than C/I/S; difference of
around 200ms, not a significant difference.

Table 5-8: Regular experiment result and analysis

The results of the analysis of variance (ANOVA), presented in Table 5-8, show that the

percentage of variation explained by the factors were: Software Architectures (SA) - 9%,

Scenarios (S) - 84% and the interaction of these (SA+S) was 3%. The error also

explained about 3% of the variation. Clearly, the different scenarios had the greatest

impact on the variation in results while the variation attributable to the different

architecture was minor.

Software Architecture (SA) Scenarios (S) SA+S %Error

8.94% 84.18% 3.36% 3.52%

Table 5-9: Results of the analysis of variance (ANOVA) for Experiment 1

Summary of Experiment 1: In case of regular data transmission through middleware,

the data transmission time increases if the data size increases. For transmission of larger

data sets, C/I/S performs better than C/A/S, but the difference in transmission time

between C/A/S and C/I/S is small.

5.3.2 Experiment 2: Use of caching

In Experiment 2, the scenarios are same as Experiment 1 (Table 5-7); here, we cache data

in the middleware to understand its impact on the scenarios for the software architectures

(C/A/S and C/I/S model). For this experiment, the C/A/S model performs better than the

C/I/S model but the difference is very small; scenario 1 is faster than scenario 2 because

of the data size of scenario 2 is larger than scenario 1. Same as experiment 1, we execute

1
 SD = Standard Deviation

www.manaraa.com

42

scenario 3, but again, we are unable to display data on the mobile device. The experiment

with caching results and analysis are presented in Table 5-10.

Scenarios C/A/S (SD) C/I/S (SD) Analysis

Scenario 1 470.67 ms
(1.15)

492.67 ms
(13.65)

C/A/S little faster than C/I/S but the different
is negligible

Scenario 2 544.67 ms
(15.05)

622.33 ms
(20.28)

C/A/S faster than C/I/S but the different is
small

Table 5-10: Experiment with caching result and analysis

We perform three factor analysis of variance (ANOVA) between software architectures,

scenarios, and caching using the data from Experiments 1 (without caching) and 2 (with

caching); the experimental results are summarized in Table 5-10.

Software Architecture Scenario (S)
2
 Caching (Ca)

3
 Result SD

C/A/S S1 No Ca 525.67 ms 31.39

C/A/S S1 Ca 470.00 ms 1.55

C/A/S S2 No Ca 1073.00 ms 37.27

C/A/S S2 Ca 544.67 ms 15.05

C/I/S S1 No Ca 577.67 ms 24.22

C/I/S S1 Ca 492.67 ms 13.65

C/I/S S2 No Ca 1073.00 ms 32.27

C/I/S S2 Ca 622.33 ms 20.21

Table 5-11: Three-factor analysis on software model, scenario, and caching

The results of the ANOVA shows that the percentage of variation explained by the

factors is: Scenarios (S) – 42.80%, Caching (Ca) – 34.50%, the interaction of these

(S+Ca) – 19.40%, and the error explained about 2.5%; the full experimental results of the

three-factor analysis are presented in appendix A. The different scenarios and caching

have the greatest impact on the variation in performance results; also, interaction of

2
 S1 represents Scenario 1 and S2 represents Scenario 2.

3
 Ca represents With Caching and No Ca represents Without Caching.

www.manaraa.com

43

scenarios and caching has some impact. The variation attributable to the different

architecture is minor. The results of the ANOVA for the experiment with caching are

presented in Table 5-12.

Scenario (S) Caching (CA) S+CA Error

42.80% 34.50% 19.40% 2.28%

Table 5-12: Results of the analysis of variance (ANOVA) of experiment with caching

Summary of Experiment 2: Data caching in the middleware significantly improves the

performance of data transmission; especially in case of transmission of larger data sets.

5.3.3 Experiment 3: Use of compression

Experiments with compression in the middleware use the same scenarios as in

Experiment 1. In Experiment 3, we compress data in the middleware before transmitting

it to the mobile application, and decompress data in the mobile application before

displaying it on the mobile screen. We analyze the effect on data transmission due to

compression and decompression in middleware and mobile application respectively for

the scenarios and the architectures (C/A/S and C/I/S model). In this experiment, we use

gzip compression (described in 4.3.2) and found compression significantly changes the

total data size that can be transmitted; the change of data sizes due to compression is

presented in Table 5-13.

Scenarios Data size without compression Data size after compression

Scenario 1 ~ 2 KB ~0.4 KB

Scenario 2 ~ 45 KB ~ 10.5 KB

Scenario 3 ~ 230 KB ~ 56 KB

Table 5-13: Change of data size after data compression

The compressed data is in a binary format and must be encoded in order to transmit it

through our web services. This requires that the mobile application decodes the data

before decompression. In Experiment 3, scenario 3 does execute, unlike in both in

www.manaraa.com

44

Experiment 1 and Experiment 2. The analysis result shows that there is no significant

difference of data transmission time for the different software models (C/A/S and C/I/S).

The results with compression for the scenarios are presented in Table 5-14.

Scenarios C/A/S (SD) C/I/S (SD) Analysis

Scenario 1 478.67 ms

(21.08)

545.00 ms

(45.93)

C/A/S better; but negligible

difference.

Scenario 2 875.67 ms

(41.02)

817.67 ms

(39.92)

C/I/S better; but not a significant

difference.

Scenario 3 2365.00 ms

(128.74)

2190.67 ms

(63.36)

C/I/S better; but not a significant

difference.

Table 5-14: Experiment with compression results and analysis

We conduct comparative analysis in between the results after compression and the results

before compression to analyze the change of data transmission time due to compression.

The results show that compression improves data transmission time over the basic data

transmission; the experimental results are presented in Table 5-15.

Software

Architecture

Scenario (S) Compression (Co)
4
 Results SD

C/A/S S1 No Co 525.67 ms 31.39

C/A/S S1 Co 478.67 ms 21.08

C/A/S S2 No Co 1073.00 ms 37.27

C/A/S S2 Co 875.67 ms 41.02

C/I/S S1 No Co 577.67 ms 24.21

C/I/S S1 Co 545.00 ms 45.92

C/I/S S2 No Co 1073.00 ms 37.27

C/I/S S2 Co 817.67 ms 39.72

Table 5-15: Experimental results for software models, scenarios, and compression

4
 Co represents Compression and No Co represents No compression in the middleware

www.manaraa.com

45

The results of the analysis of variance (ANOVA) (full experiment results of the three-

factor analysis are presented in Appendix B shows that the percentage of variation

explained by the factors is: Compression (Co) – around 8%, Scenarios (S) - around 82%;

the interaction of these (Co+S) around 4% and the error also explained about 4.5% of the

variation. Clearly, the different scenarios had the greatest impact on the variation in

results while the variation attributable to the compression is minor. But we found that the

bigger the data size, the better compression performs. So, compression has an impact in

case of large data large data transmission. The results of the ANOVA for Experiment 3

are presented in Table 5-16.

Scenario (S) Compression (Co) S+Co Error

82.38% 7.96% 3.91% 4.57%

Table 5-16: Results of the analysis of variance (ANOVA) of experiments with

compression.

Summary of Experiment 3: Using compression we can transmit larger data sets to

mobile applications and also improves data transmission time.

5.3.4 Experiment 4: Experiments with encryption

In this experiment we analyze data transmission with encryption in the middleware and

decryption in the mobile application. Here, the experimental scenarios are same as in

Experiment 1. We use Base64 compression (described in 4.3.3) in the middleware and

Base64 decryption in mobile application. The data encryption increases the size of the

data; the change of data size due to encryption is presented in Table 5-17.

Scenarios Data size before encryption Data size after encryption

Scenario 1 ~ 2 KB ~3 KB

Scenario 2 ~ 45 KB ~ 60 KB

Table 5-17: Change of data size after encryption

In this experiment, scenario 3 does not work the same as in Experiment 1 and Experiment

2 as the data size is bigger. We analyze data for the two scenarios in two different

software architectures (C/A/S and C/I/S model). From the experimental results, we found

www.manaraa.com

46

that the C/A/S model performs better than the C/I/S model in the case of encryption, but

the difference is small; the experimental results are presented in Table 5-18.

Scenarios C/A/S (SD) C/I/S (SD) Analysis

Scenario 1 669.33 ms
(15.95)

806.00 ms
(81.07)

C/A/S better but negligible difference

Scenario 2 1134.00 ms
(46.81)

1236.00 ms
(15.72)

C/A/S better but negligible difference

Table 5-18: Experiment with encryption result and analysis

We have done a three-factor ANOVA analysis between the results after encryption and

results before encryption. From the three factor analysis results, we found that encryption

increases data transmission time than regular data transmission as data size increases; the

experimental results are presented in Table 5-19 and the results of the ANOA are

presented in Table 5-20; the full experiment results of the three-factor analysis are

presented in appendix C.

Software

Architecture

Scenario (S) Encryption (En)
5
 Results SD

C/A/S S1 No En 525.67 ms 31.39

C/A/S S1 En 669.33 ms 15.95

C/A/S S2 No En 1073.00 ms 37.27

C/A/S S2 En 1134.00 ms 46.81

C/I/S S1 No En 577.67 ms 24.21

C/I/S S1 En 806.00 ms 81.04

C/I/S S2 No En 1073.00 ms 37.27

C/I/S S2 En 1236.00 ms 15.72

Table 5-19: Three factor analysis on software models, scenarios, and encryption

The results of the analysis of variance (ANOVA) shows that the percentage of variation

explained by the factors was: Encryption (En) – around 8%, Scenarios (S) - around 83%.

5
 En represents Encryption and No En represents No Encryption in the middleware

www.manaraa.com

47

The error also explained about 5% of the variation. Clearly, the different scenarios had

the greatest impact on the variation in results while the variation attributable to the

encryption was a minor.

Software Architecture (SA) Scenario (S) Encryption (En) Error

1.89% 83.86% 7.94% 4.87%

Table 5-20: Results of the analysis of variance (ANOVA) of experiment with

encryption.

Summary of experiment 4: Encryption increases data transmission, especially if the data

size is larger, but it provides security to data which is important in wireless network.

5.3.5 4-Factor Analysis

In Experiments 1, 2, 3 and 4, we analyzed the performance of different techniques and

different mobile software architectures. We combine the data from these experiments

with additional experiments involving combinations of these data transmission

techniques (caching, compression, and encryption) and test it in the different scenarios –

small data and large data. We experiment with 16 combinations of techniques and

software models for each of the data scenarios. The experiments for each of the data

scenarios are summarized in Table 5-21.

Identity Software

Architecture

(SA)

Caching (Ca) Compression

(Co)

Encryption

(En)

1 C/A/S
Ca Co En

2 C/A/S
Ca Co No En

3 C/A/S
Ca No Co En

4 C/A/S
Ca No Co No En

5 C/A/S
No Ca Co En

6 C/A/S
No Ca Co No En

7 C/A/A
No Ca No Co En

8 C/A/A
No Ca No Co No En

9 C/I/S
Ca Co En

www.manaraa.com

48

10 C/I/S
Ca Co No En

11 C/I/S
Ca No Co En

12 C/I/S
Ca No Co No En

13 C/I/S
No Ca Co En

14 C/I/S
No Ca Co No En

15 C/I/S
No Ca No Co En

16 C/I/S
No Ca No Co No En

Table 5-21: Experiment design of 4-factor analysis

From the four-factor data analysis we discovered that (experiment result is in appendix

D):

1. For large data, caching significantly improves data transmission time.

2. For large data, encryption increase data transmission time.

3. Caching and compression together improve data transmission time.

4. Caching and encryption together increase data transmission time.

5. Caching, compression and encryption on the same data together increase the

transmission time, because at the server end compression and encryption

computing takes time, on the other hand the client end decompression and

decryption take computing time.

6. No significant differences were found due to the software architecture (C/A/S vs.

C/I/S), but in the case of large data, C/I/S seems to perform somewhat better than

C/A/S.

The results of the analysis of variance (ANOVA) on the large data scenario (data size is

larger than 50 KB) shows that the percentage of variation explained by the factors is:

Caching (Ca) – 21.39%, Encryption (En) – 7.25%, the interaction of Software

Architecture and Encryption (SA+En) – 7.22%, the interaction of Compression and

Encryption (Co+En) – 7.23%, and the interaction of Software Architecture Caching and

www.manaraa.com

49

Compression (SA+Ca+Co) – 8.45%; the other interaction terms explained a small

percentage of the variation. Clearly, caching has the greatest impact on the variation in

results; also, interaction of software architecture, caching and caching have the large

impact on the variation in results. Encryption, combination of software architecture with

encryption, and combination of compression with encryption also have impacts on the

variation in results. The results of the ANOVA of the four-factor analysis for large data

scenario are presented in Table 5-22.

Caching Encryption SA+En Co+En SA+Ca+Co

21.39% 7.25% 7.22% 7.23% 8.45%

Table 5-22: The results of the analysis of variance (ANOVA) on the large data

scenario.

The results of the analysis of variance (ANOVA) on the small data scenario (data size is

less than 10 KB) shows that the percentage of variation explained by the factors is:

Encryption (En) – 11.49%, the interaction of Software Architecture and Encryption

(SA+En) – 8.20%, the interaction of Caching and Encryption (Ca+En) – 8.80%, the

interaction of Software Architecture, Caching and Encryption (SA+Ca+En) – 9.30%, the

interaction of Software Architecture, Compression and Encryption (SA+Ca+En) –

7.29%, the interaction Caching, Compression and Encryption (Ca+Co+En) – 8.62%, and

the interaction of Software Architecture, Caching, Compression and Encryption

(SA+Ca+Co+En) – 9.75%; the other interaction terms explained very small percentages

of the variation. The results of the ANOVA of the four-factor analysis for the small data

scenario are presented in Table 5-22.

En SA+En Ca+En SA+Ca+En SA+Co+En Ca+Co+En SA+Ca+Co+En

11.49% 8.20% 8.80% 9.30% 7.29% 8.62% 9.75%

Table 5-23: The results of the analysis of variance (ANOVA) on small data scenario

of the four-factor analysis

Summary of experiment 5: In the case of large data transmission, caching, and caching

with compression performed better. On the other hand encryption slows down data

transmission, even if we use encryption with caching and compression. Data

www.manaraa.com

50

transmission with caching, compression and encryption together significantly slows down

data transmission.

5.4 Summary

In this Chapter we describe the experiments and analyze their results. At the end of every

experiment, we summarize the findings from each experiment. In the next Chapter, we

discuss the findings and their implications.

www.manaraa.com

51

Chapter 6

Discussion of Results

6 Discussion of Results

In this Chapter, we will discuss about our findings from Chapter 5, as well as provide our

observations on mobile application middleware, the middleware API, and mobile

intercept API. We also identify limitations of the research and our observations based on

that.

6.1 Realizing Data Transmission Techniques

We experimented with caching, encryption and compression techniques for mobile

application data transmission from remote data sources through a middleware. In

Sections 5.3.1 (basic experiments), 5.3.2 (experiments with caching), 5.3.3 (experiments

with compression), and 5.3.4 (experiments with encryption), we examined the impact of

the various techniques on data transmission time with different scenarios involving

different sized data sets. In Section 5.3.5, we analyzed additional experiments using

combinations of these techniques in order to do a four-factor analysis on the small and

large data set scenarios.

6.1.1 Caching

“Data caching in the middleware significantly improves the performance of data

transmission; especially in the case of large data sets.”

In our research, we experiment on data transmission for mobile application connecting to

remote enterprise databases or data sources. When caching is enabled, if mobile

www.manaraa.com

52

application requests remote data, the request goes to the middleware which then looks at

its local cache. If the data is present, the middleware returns the data back to the mobile

application from its local cache. There is no database execution in this process, so data

access happens faster than the basic process (without caching). In the case of large data,

the impact of caching is noticeable because it saves expensive transaction time between

the middleware and the remote database; also no data processing (converting raw data to

XML) is needed in the middleware before returning data back to the mobile application.

Suggestions for mobile application developers:

1. Mobile application developers should use caching for large data which does not

change frequently.

2. Caching can be used for small data, though it will not make any significant

difference on data transaction time but it will save some database execution.

6.1.2 Compression

“Compression is an effective technique for very large data transactions for mobile

applications; also, it improves data transmission time and provides data security.”

Our experiments showed that we can move large data sets to mobile applications by

compressing. Compression squeezes data so that small amounts of data are passed over

the wireless network with lest transmission time.

Suggestions based on our observations:

1. Mobile application developers should use compression in the middleware to

transmit large data over network faster.

2. Do not use compression for small data transmission, as it may increase total

transaction time due the overhead of compression in the middleware and again in

decompression in the mobile application.

www.manaraa.com

53

3. Using data compression to minimize the data size before transmission saves

bandwidth consumption.

6.1.3 Encryption

“Encryption increases data transmission time, especially if the data size is larger, but it

provides security for the data, which can be important in a wireless network.”

Encryption can be very important in protecting the data transferred via a wireless

network. This is particularly the case when transmitting data across public networks.

In our experiments, we found that encryption increase data transmission time because the

total size of the data increases due to encryption; also, encrypted data needs to be

decrypted in the mobile application which is expensive in mobile computing. We

discovered that out test mobile application cannot decrypt the data if the data size is more

than 60KB; this would depend on the amount of memory in the mobile device, but

indicates that are limits that need to be considered.

Suggestions based on our observations:

1. Mobile application developers should use encryption in the middleware for small

data to secure it.

2. Do not encrypt large data because it increases computing time and can cause

memory limit exceptions.

6.1.4 Combination of techniques

Our suggestions based on the combination of caching, compression, and encryption

techniques are as follows:

1. In case of large data sets, caching with compression provides faster data

transmission, so a software developer can use the combination of compression

and caching on large data sets to improve data transaction performance.

www.manaraa.com

54

2. Do not use caching, compression and encryption techniques together for data

transaction; it significantly slows down data transmission performance.

6.1.5 Mobile software architectures

We performed our experiments with the C/A/S and C/I/S models because they had been

identified as the most plausible models for data requests by previous researchers. One

objective of our research was to investigate whether one performed better than the other

and for which scenarios and techniques.

Based on our research results, we conclude that there is little difference, performance-

wise, between the techniques – both perform almost the same in a wireless network. In

most cases we found data transaction time for the C/A/S model is a little smaller than the

C/I/S model. In the case of larger data sets, transfer with the C/I/S model performed

better than C/A/S model. But the transaction time differences were small.

Our suggestions regarding the mobile software model architectures are:

1. In the C/I/S model, the communication is through the Intercept API. In our

experience, using the API makes mobile programming simpler and may be an

advantage when developing application for heterogeneous mobile operating

systems.

2. Using the C/I/S model provides reusable code, which can help improve the

quality of the product. So even if in some circumstances the C/I/S model

quantitatively require a little extra transaction time, it qualitatively improves the

system.

www.manaraa.com

55

Chapter 7

Conclusion

7 Conclusion

The demand for mobile applications is increasing every day. Today, people expect to

have mobile applications to aid in banking, shopping, meetings, medical services, and

other services. In our research, we focused on accessing remote data from enterprise

databases or data sources in mobile application. We explored the use of the Client-agent-

Server (C/A/S) model and the Client-Agent-Intercept (C/I/S) models; C/A/S and C/I/S

are two well-known models for application development. Using middleware is one of the

well-known techniques for enabling mobile applications to access remote data. We

considered the impact of using caching, compression and encryption with these models in

data transmission. Our goal was to understand the impact on performance, as measured

by transmission time, of these techniques and the impact on different sizes of data sets.

Based on our experiments, we were able to compare the performance of the software

models and help clarify the good and bad effects of using caching, compression,

encryption, and/or combination of these techniques in mobile applications relying access

to remote data.

As part of our work, we developed a middleware API and intercept API. Using the

middleware API and mobile application intercept API, the mobile application developer

should be able to more easily develop mobile applications accessing remote data sources

and more easily develop them for heterogeneous mobile environments.

A number of future directions exist based on this work:

www.manaraa.com

56

1. We experimented with the C/A/S model and C/I/S model. Future work could

look at extending the C/I/S model for client side pre-fetching and background

threading to retrieve data from the middleware.

2. Our experiments used a Nokia E72 smart phone which runs the Symbian

Operating System. It would be useful to evaluate the APIs by porting them to

other mobile operating systems and developing mobile applications. There are

many new and different mobile devices, and testing the APIs with smart phones

such as iPhones, iPads, Tablets, etc would be useful.

3. With other devices, it would be useful repeat some of these experiments to see if

similar results can be obtained. Newer devices have more capabilities, faster

processors, more memory so the absolute times may be faster or data sets larger.

It would, however, be interesting to see if the impact in performance of these

techniques follows a similar pattern.

Finally, this research will help to identify efficient middleware models and techniques

that can be used with mobile applications which must retrieve data from remote data

bases or data sources. The results will be useful to developers of mobile applications.

www.manaraa.com

57

References

[1] eMarketer: Social Network Marketing to Reach $2.5 Billion in 2011.
marketwire. [Online] May 09, 2007.
http://www.marketwire.com/press-release/social-network-marketing-to-reach-
25-billion-in-2011-733494.htm. Last visited 2nd March, 2012

[2] Meyers J: US Mobile Social Networking and the Millennial Generation. : In-Stat

Mobile Consumer Service, Reed Elsevier, 2008.

[3] Insight Ipsos: The Face of the Web. : Ipsos Insight Marketing Research
Consultancy, Tavel, Modeling and Simulation Design. AK Peters Ltd. 2007.

[4] London: The Time: The Future of Social Networking: Mobile Phones. : Times

Newspapers Ltd. 2008. Last visited online on 2nd March, 2012

[5] Apple Inc.: Apple Special Event. Apple Events. [Online] Apple Inc., October 04,

2011.
http://events.apple.com.edgesuite.net/11piuhbvdlbkvoih10/event/index.html.
Last visited 2nd March 2012

[6] Paul I: Android Market Tops 400,000 Apps. PCWorld. [Online] January 04,

2012.
http://www.pcworld.com/article/247247/android_market_tops_400000_apps.ht
ml. Last visited 2nd March 2012

[7] Christina B: Google’s 10 Billion Android App Downloads: By the Numbers.

WIRED. [Online] December 08, 2001.
http://www.wired.com/gadgetlab/2011/12/10-billion-apps-detailed/. Last visited
2nd March 2012.

[8] Gartner: Worldwide Smartphone Sales Soared in Fourth Quarter of 2011 With

47 Percent Growth. GartnerNewaroom. [Online] February 15, 2012.
http://www.gartner.com/it/page.jsp?id=1924314. Last visited 2nd March 2012

[9] Rocha B P S, Rezende C G, Loureiro A A R: Middleware for multi-client and

multi-server mobile applications; 2nd International Symposium on Wireless
Pervasive Computing, 2007. ISWPC '07, doi 10.1109/ISWPC.2007.342643

[10] Swaroop V, Shanker U: Mobile distributed real time database systems: A

research challenges; 2010 International Conference on Computer and
Communication Technology (ICCCT), 2010, pp. 421-424, doi
10.1109/ICCCT.2010.5640495.

www.manaraa.com

58

[11] Capra L, Emmerich W, Mascolo C: Middleware for mobile computing:

Awareness vs. transparency. Proceedings of the Eighth Workshop on Hot Topics
in Operating Systems, 2001. HOTOS ’01. Washington, DC, USA: IEEE
Computer Society, 2001, p. 164, doi:10.1109/HOTOS.2001.990080.

[12] Mascolo C, Capra L, Emmerich W: Middleware for mobile computing (a

survey). In Tutorial Proceedings of the International Conference of Networking
2002. Springer, 2002, pp. 20–58.

[13] Capra L, Blair G S, Mascolo V, Emmerich W, and Grace P: Exploiting

reflection in mobile computing middleware. SIGMOBILE Mobile Computing
Communication. Rev., vol. 6, no. 4, pp. 34–44, 2002.

[14] Mascolo C, Capra N, Zachariadis S, and Emmerich W: Xmiddle: A data-

sharing middleware for mobile computing. Wireless Personal Communications,
vol. 21, no. 1, pp. 77–103, 2002.

[15] Capra L, Emmerich W, and Mascolo C: Carisma: Context-aware reflective

middleware system for mobile applications. IEEE Transactions on Software
Engineering, vol. 29, no. 10, pp. 929–945, October 2003,
doi:10.1109/TSE.2003.1237173.

[16] Campbell A T: Mobiware: Qos-aware middleware for mobile multimedia

communications. In Proceedings of the IFIP TC6 seventh international
conference on High performance networking, HPN ’97, VII. London, UK, UK:
Chapman & Hall, Ltd., 1997, pp. 166–183.

[17] Bellavista P, Corradi A, and Stefanelli C: Mobile agent middleware for

mobile computing. Computer, vol. 34, no. 3, pp. 73–81, 2001.

[18] Chan A T, Chuang S N: Mobipads: A reflective middleware for context-aware
mobile computing. IEEE Transactions on Software Engineering, vol. 29, no. 12,
pp. 1072–1085, December 2003, doi:10.1109/TSE.2003.1265522.

[19] Rocha B P S, Rezende C G, Loureiro A A R: Middleware for multi-client

and multi-server mobile applications. 2nd International Symposium on Wireless
Pervasive Computing, 2007. ISWPC '07

[20] Gehlen G, Mavromatis G: Mobile Web Service based Middleware for Context-

Aware Applications. In Proceedings of the 11th European Wireless Conference
2005, Vol. 2, p.p. 784-790, Nicosia, Cyprus,VDEVerlag, 2005.

www.manaraa.com

59

[21] Gehlen G, Bergs R: Performance of mobile Web Service Access using the
Wireless Application Protocol (WAP). In Proceedings of World Wireless
Congress 2004, p.p. 427-432, San Francisco, USA, 2004.

[22] WAPForum: Binary xml content format specification. Version 1.3, wap-192-

wbxml-20010725-a.[Online] http://www.wapforum.org, July 2001. Last visited
2nd March 2012

[23] Gupta S, Joshi A, Santiago J, Patwardhan A: Query distribution estimation

and predictive caching in mobile ad hoc networks. In Proc. of MobiDE, 2008,
pp. 24–30

[24] Yin L and Cao G: Supporting cooperative caching in ad hoc networks. IEEE

Transactions on Mobile Computing, vol. 5, no. 1, pp. 77–89, Jan. 2006,
doi:10.1109/TMC.2006.15.

[25] Cheluvaraju B, Kousik A S R, and Rao S: Anticipatory Retrieval and Caching

of Data for Mobile Devices in Variable-Bandwidth Environments. 5th Annual
IEEE International Systems Conference (IEEE SysCon 2011), Montreal,
Canada, April 2011

[26] Huang J, Xiao Y, Liang Y: A Novel Secure Access Method for Remote

Databases Based on Mobile Agents. Natural Computation, 2009. ICNC '09. Fifth
International Conference on , vol.5, no., pp.519-522, 14-16 Aug. 2009

[27] Peine H: Application and programming experience with the Ara mobile agent

system, 2002. Software-Practice & Experience 32, 515–541.

[28] Gray R S, Cybenko G, Kotz D, Peterson R A, Rus D: D’Agents: applications
and performance of a mobile-agent system.2002, Software-Practice &
Experience 32, 543–573

[29] Spyrou C, Samaras G, Pitoura E, Evripidou P: Mobile agents for wireless

computing: the convergence of wireless computational models with mobile-
agent technologies. 2004, Mobile Networks & Applications

[30] Meier J D, Alex H, David H, Jason T, Prashant B, Lonnie W, Rob B J,
Akshay B: App Arch Guide 2.0. [Online]
http://apparchguide.codeplex.com/wikipage?title=Chapter 19 - Mobile
Applications. Last visited 2nd March 2012.

[31] Komiya T, Ohsida H, Takizawa M: Mobile agent model for distributed
systems. 22nd International Conference on Distributed Computing Systems
Workshops, 2002.

[32] IBM Corporation: Aglets Software Development Kit Home.
[Online]http://www.trl.ibm.com/aglets/ . Last visited 2nd March 2012

www.manaraa.com

60

[33] ic#code: The Zip, GZip, BZip2 and Tar Implementation For .NET [Online]

http://www.icsharpcode.net/opensource/sharpziplib/ Last visited 2nd March 2012

[34] Greenberg M S, Byington J C, Harper D G: Mobile agents and security. IEEE

Communications Magazine, Vol.36, July 1998, pp. 76~85

[35] kSOAP2: kSOAP. [Online] http://ksoap2.sourceforge.net/. Last visited 2nd

March 2012

[36] ORACLE: J2ME Web Services APIs (WSA), JSR 172. Sun Developer Network

(SDN). [Online] http://java.sun.com/products/wsa/. Last visited 2nd March 2012

[37] kXML: kXML, [Online] http://kxml.sourceforge.net/. Last visited 2nd March

2012

[38] Jonathan K: Parsing XML in J2ME. Sun Developer Network (SDN). [Online]

March 7, 2002. http://developers.sun.com/mobility/midp/articles/parsingxml/.
Last visited 2nd March 2012

[39] Jazzlib: Jazzlib. [Online] http://jazzlib.sourceforge.net/. Last visited 2nd March

2012

[40] Bouncy Castle: The Legion of the Bouncy Castle [Online]

http://www.bouncycastle.org/latest_releases.html. Last visited 3rd March, 2012

[41] Howard R: Web Services with ASP.NET. MSDN. [Online] Microsoft

Corporation, February 22, 2011. http://msdn.microsoft.com/en-
us/library/ms972326.aspx. Last visited 2nd March 2012.

[42] AdventureWorks Database: AdventureWorks Database for MySQL, [Online]
http://sourceforge.net/projects/awmysql/. Last visited 4th March 2012.

www.manaraa.com

61

Appendix A: Three-Factor Analysis for Caching

In case of three-factor analysis on software architectures, scenarios, and caching; we

analyze the results of data with caching and without caching, in scenario 1 and scenario 2

for C/A/S model and C/I/S model.

The Results of the three-factor analysis of software architecture, scenario, and caching

are as follows:

Software

architecture (SA),

scenario (S) and

caching (Ca)

y-mean y1 y2 y3 SD

C/A/S + S1 525.67 ms 501.00 ms 515.00 ms 561.00 ms 31.39

C/A/S+ S1 + Ca 470.67 ms 470.00 ms 472.00 ms 470.00 ms 1.15

C/A/S + S2 1073.00 ms 1030.00 ms 1093.00 ms 1096.00 ms 37.26

C/A/S + S2 + Ca 544.67 ms 535.00 ms 562.00 ms 537.00 ms 15.04

C/I/S + S1 577.67 ms 588.00 ms 550.00 ms 595.00 ms 24.21

C/I/S+ S1 + Ca 492.67 ms 495.00 ms 478.00 ms 505.00 ms 13.65

C/I/S + S2 1073.00 ms 1030.00 ms 1093.00 ms 1096.00 ms 37.26

C/I/S + S2+ Ca 622.33 ms 644.00 ms 619.00 ms 604.00 ms 20.20

www.manaraa.com

62

Appendix B: Three-Factor Analysis for Compression

In case of three-factor analysis on software architectures, scenarios, and compression; we

analyze the results of data with compression and without compression, in scenario 1 and

scenario 2 for C/A/S model and C/I/S model.

The Results of the three-factor analysis of software architecture, scenario, and

compression are as follows:

Software

architecture (SA),

scenario (S) and

Compression (Co)

y-mean y1 y2 y3 SD

C/A/S + S1 525.67 ms 501.00 ms 515.00 ms 561.00 ms 31.39

C/A/S+ S1 + Co 478.67 ms 461.00 ms 473.00 ms 502.00 ms 21.07

C/A/S + S2 1073.00 ms 1030.00 ms 1093.00 ms 1096.00 ms 37.26

C/A/S + S2 + Co 875.67 ms 922.00 ms 844.00 ms 861.00 ms 41.01

C/I/S + S1 577.67 ms 588.00 ms 550.00 ms 595.00 ms 24.21

C/I/S+ S1 + Co 545.00 ms 570.00 ms 573.00 ms 492.00 ms 45.92

C/I/S + S2 1073.00 ms 1030.00 ms 1093.00 ms 1096.00 ms 37.26

C/I/S + S2+ Co 817.67 ms 861.00 ms 783.00 ms 809.00 ms 39.71

www.manaraa.com

63

 Appendix C: Three-Factor Analysis for Encryption

In case of three-factor analysis on software architectures, scenarios, and encryption; we

analyze the results of data with encryption and without encryption, in scenario 1 and

scenario 2 for C/A/S model and C/I/S model.

The Results of the three-factor analysis of software architecture, scenario, and encryption

are as follows:

Software

architecture (SA),

scenario (S) and

Encryption (En)

y-mean y1 y2 y3 SD

C/A/S + S1 525.67 ms 501.00 ms 515.00 ms 561.00 ms 31.39

C/A/S+ S1 + En 669.33 ms 665.00 ms 687.00 ms 656.00 ms 15.94

C/A/S + S2 1073.00 ms 1030.00 ms 1093.00 ms 1096.00 ms 37.26

C/A/S + S2 + En 1134.00 ms 1188.00 ms 1109.00 ms 1105.00 ms 46.80

C/I/S + S1 577.67 ms 588.00 ms 550.00 ms 595.00 ms 24.21

C/I/S+ S1 + En 806.00 ms 775.00 ms 898.00 ms 745.00 ms 81.07

C/I/S + S2 1073.00 ms 1030.00 ms 1093.00 ms 1096.00 ms 37.26

C/I/S + S2+ En 1236.00 ms 1219.00 ms 1250.00 ms 1239.00 ms 15.71

www.manaraa.com

64

Appendix D: Four-Factor Analysis

In case of four factor analysis, we experiment with the combination of techniques and

mobile software architecture we have been used in this research work. We perform this

experiment for different scenarios. The results of the combination of software

architectures and techniques are as follows:

Combination of

techniques & software

architectures

Small data scenario

Transaction time (SD)

Large data scenario

Transaction time (SD)

C/A/S +Ca+Co+En 483.00 ms (1.73) 566.67 ms (8.50)

C/A/S +Ca+Co 460.00 ms (17.44) 547.33 ms (17.68)

C/A/S +Ca+En 475.00 ms (8.51) 547.67 ms (14.47)

C/A/S +Ca 464.67 ms (3.06) 548.00 ms (14.53)

C/A/S +Co+En 532.67 ms (19.04) 887.00 ms (25.24)

C/A/S +Co 524.33 ms (28.15) 860.67 ms (9.61)

C/A/S +En 526.33 ms (39.58) 805.33 ms (22.30)

C/A/S 510.33 ms (13.01) 849.33 ms (24.79)

C/I/S +Ca+Co+En 502.00 ms (26.89) 607.67 ms (15.04)

C/I/S +Ca+Co 512.33 ms (9.72) 549.33 ms (44.23)

C/I/S +Ca+En 498.00 ms (4.59) 532.00 ms (24.98)

C/I/S +Ca 474.67 ms (30.43) 502.67 ms (11.72)

C/I/S +Co+En 652.67 ms (47.09) 927.00 ms (53.11)

C/I/S +Co 569.33 ms (11.24) 902.00 ms (28.67)

C/I/S +En 570.33 ms (28.36) 930.00 ms (30.79)

C/I/S 549.33 ms (27.32) 914.00 ms (25.52)

www.manaraa.com

65

We represent the results of the analysis of variance (ANOVA) in the following table

which shows the percentage of variation for the combination of technique in four factor

analysis. In column 1 we represent the factors, in column 2 and column 3 we represent

effect of the factors for small data scenario (scenario 1) and large data scenario (scenario

2).

Factors Small data scenario

(Scenario 1)

Large data scenario

(Scenario 2)

Software Architecture (SA) 0.98% 2.87%

Caching (Ca) 1.10% 21.39%

Compression (Co) 3.35% 3.18%

Encryption (En) 11.49% 7.25%

SA+Ca 3.76% 2.56%

SA+Co 4.18% 5.59%

SA+En 8.20% 7.22%

Ca+Co 5.01% 6.34%

Ca+En 8.80% 4.57%

Co+En 7.54% 7.23%

SA+Ca+Co 5.73% 8.45%

SA+Ca+En 9.30% 5.42%

SA+Co+En 7.29% 4.92%

Ca+Co+En 8.63% 5.93%

SA+Ca+Co+En 9.75% 4.71%

www.manaraa.com

66

Appendix E: Queries of Inventory System

There are four steps of the inventory system; the queries of the inventory system are as

follows:

Step Query

Step 1 select productcategoryid id, name from productcategory

Step 2 select productsubcategoryid id, name from productsubcategory where
productcategoryid in (select ProductCategoryID from productcategory where
name='"+__selectedString+"')"

Step 3 select productid id, concat(productid,'- ',name, ', ', productnumber) as name
from product where ProductSubcategoryID IN(select productsubcategoryid
id from productsubcategory where name='"+__selectedString+"')"

Step 4 select p.ProductID, Name, ProductNumber, Color, StandardCost, ListPrice,
Size,Description, ph.ThumbnailPhoto photo from product p,
productdescription d, productphoto ph where p.productid=d.productid and
p.productid=ph.productid and p.productid="+id

www.manaraa.com

67

Appendix F: Queries of Medical Information System

There are four steps of the medical information system; the queries of the inventory

system are as follows:

Step Query

Step 1 SELECT username, password, fullname FROM doctors WHERE
username="paramUsername" and password="paramPassword"

Step 2 No database query calling from step 2

Step 3 select concat(p.patientid,'- ',firstname,' ',lastname,' [Age:',pd.age,', Sex:',
pd.sex,']') name from patient p, patient_data pd where p.patientid=pd.patientid
and (p.firstname like '%"+name+"%' or p.lastname like '%"+name+"%')"

Step 4 SELECT patientid, Hospital_Number, age, sex, Height, Weight,
Cardiovascular, Respiratory, Trauma, Surgical, Infectious, Malignancy,
hosp_arrival_location, hosp_admission_unit, other_medical, Hosp_Outcome,
Source, ICU_Outcome, Operative, dxcategory_text, ICUDiagnosisCode,
Other_Diagnosis, LowPulse, HiPulse, LowMBP, HiMBP, LowSBP, HiSBP,
LowTem, HiTem, LowRR, HiRR, rrVented, LowPaO2, LowPaCO2,
LowFiO2, bgVented, LowPH, HiPH, LowHemat, HiHemat, LowWBC,
HiWBC, LowCreatin, HiCreatin, Urine, LowUrea, HiUrea, LowSodium,
HiSodium, LowPotas, HiPotas, LowAlbum, HiAlbum, LowBili, HiBili,
LowGlu, HiGlu, Eye, Verbal, Motor, AIDS, Hepatic, Lymphoma, Cancer,
Leukemia, chf, lungdisease, renalfailure, CVT, Cirrhosis, Immunosup,
comorbidity, SpecifyDischarge, source_specify, Prior_Care,
Prior_Care_Other, Chronic_Type, Acute_Type, classification, liver,
immunosuppression, icu_lag, star, hosp_los, icu_los, hosp_death, icu_death,
gcs, apache_aps, apache_age, apache_chpts, apache2, apache2_risk,
apache2_predicted_death, apache3, Sepsis FROM patient_data WHERE
patientid="+id

www.manaraa.com

68

Curriculum Vitae

Name: Md. Ashrafur Rahaman

Post-Secondary Education

and Degree:

The University of Western Ontario

London, Ontario, Canada

September 2010- April 212

M.Sc. Computer Science

American International University-Bangladesh

Dhaka, Bangladesh

May 2002- December 2005

B.Sc. in Computer Science

Related Working

Experience:

Teaching and Research Assistant

The University of Western Ontario

September 2010- April 2012

Senior Software Engineer

Wolters Kluwer Financial Services

From October 2009 to September 2010

Lead Software Engineer

eGeneration Limited, Dhaka, Bangladesh

From November 2009 to October 2010

	Western University
	Scholarship@Western
	April 2012

	Performance of Data Transmission for mobile applications
	Md Ashrafur Rahaman
	Recommended Citation

	Performance of Data Transmission for mobile applications

